-
00:00
1.
Linear Regression
-
01:25
2.
The Model
-
01:32
3.
Linear Regression Model (1)
-
08:18
4.
Linear Regression Model (2)
-
09:40
5.
Estimation
-
09:48
6.
Find the Least Squares Estimator
-
14:03
7.
Digression to Derivative of Matrix:
-
14:04
8.
Find the Least Squares Estimator
-
21:06
9.
Digression to Derivative of Matrix:
-
21:51
10.
Second Order Condition
-
22:48
11.
Digression to Derivative of Matrix:
-
22:50
12.
Find the Least Squares Estimator
-
23:21
13.
Digression to Derivative of Matrix:
-
23:21
14.
Second Order Condition
-
27:41
15.
Simple Regression Example
-
29:44
16.
Estimating Simple Regression
-
31:07
17.
Simple Regression
-
31:23
18.
Estimating Simple Regression
-
34:40
19.
Simple Regression
-
34:54
20.
Goodness of Fit
-
35:23
21.
Simple Regression
-
35:24
22.
Estimating Simple Regression
-
36:10
23.
Simple Regression
-
39:00
24.
Goodness of Fit
-
41:19
25.
Simple Regression
-
41:46
26.
Goodness of Fit
-
43:05
27.
Simple Regression
-
43:06
28.
Estimating Simple Regression
-
43:07
29.
Simple Regression Example
-
43:51
30.
Estimating Simple Regression
-
43:51
31.
Simple Regression
-
43:55
32.
Goodness of Fit
-
44:20
33.
LS Estimators and Properties
-
44:30
34.
Four Assumptions
-
48:37
35.
Four Assumptions
-
51:42
36.
A Digression to Variance Covariance Matrix of a Vector
-
54:03
37.
Assumption A3
-
55:45
38.
Properties of LS Estimator: Unbiased
-
1:00:21
39.
VAR-COV Of 𝛽 :VAR( 𝛽 )
-
1:00:23
40.
VAR-COV Of 𝛽 :VAR( 𝛽 )
-
1:00:57
41.
What Have We Got So Far?
-
1:00:58
42.
VAR-COV Of 𝛽 :VAR( 𝛽 )
-
1:01:29
43.
Properties of LS Estimator: Unbiased
-
1:01:42
44.
VAR-COV Of 𝛽 :VAR( 𝛽 )
-
1:05:47
45.
What Have We Got So Far?
-
1:06:26
46.
VAR-COV Of 𝛽 :VAR( 𝛽 )
-
1:06:45
47.
What Have We Got So Far?
-
1:07:15
48.
Gauss Markov Theorem (I)
-
1:09:17
49.
Gauss Markov Theorem (II)
-
1:14:25
50.
Gauss Markov Theorem (III)
-
1:17:20
51.
Estimating 𝜎 2
-
1:20:56
52.
Degrees of Freedom
-
1:23:19
53.
What do we need to do for statistical inference?
-
1:24:39
54.
Properties of the OLS Estimator
-
1:26:29
55.
Statistical Inference
-
1:27:38
56.
Hypothesis Testing
-
1:27:40
57.
Statistical Inference
-
1:28:04
58.
Hypothesis Testing
-
1:28:29
59.
The Presidential Election Example
-
1:30:35
60.
The Outcome of the US Presidential Election 1892-2012
-
1:31:57
61.
The US Presidential Election Again
-
1:33:57
62.
The Presidential Election
-
1:35:20
63.
Presidential Election Estimation
-
1:35:39
64.
The Presidential Election
-
1:36:51
65.
Presidential Election Estimation
-
1:37:53
66.
The Presidential Election
-
1:37:53
67.
The US Presidential Election Again
-
1:37:54
68.
The Outcome of the US Presidential Election 1892-2012
-
1:37:57
69.
The Presidential Election Example
-
1:37:59
70.
Hypothesis Testing
-
1:38:48
71.
The Presidential Election Example
-
1:38:48
72.
The Outcome of the US Presidential Election 1892-2012
-
1:38:49
73.
The US Presidential Election Again
-
1:38:49
74.
The Presidential Election
-
1:38:50
75.
Presidential Election Estimation
-
1:39:40
76.
Hypothesis Testing: Ex. 3a)
-
1:40:56
77.
Alternative Test for H0: b2 =b3 (b2-b3 =0)
-
1:40:57
78.
Hypothesis Testing: Ex. 3a)
-
1:41:22
79.
Presidential Election Estimation
-
1:41:23
80.
The Presidential Election
-
1:41:42
81.
Presidential Election Estimation
-
1:41:43
82.
Hypothesis Testing: Ex. 3a)
-
1:41:45
83.
Alternative Test for H0: b2 =b3 (b2-b3 =0)
-
1:44:01
84.
Hypothesis Testing: Ex. 3a)
-
1:44:02
85.
Presidential Election Estimation
-
1:44:03
86.
The Presidential Election
-
1:44:52
87.
Presidential Election Estimation
-
1:44:53
88.
Hypothesis Testing: Ex. 3a)
-
1:44:55
89.
Alternative Test for H0: b2 =b3 (b2-b3 =0)
-
1:45:41
90.
Statistical Inference for Linear Restrictions
-
1:45:46
91.
Statistical Inference for Linear Restrictions
-
1:47:25
92.
Examples of Linear Restrictions
-
1:53:12
93.
Develop a Test
-
1:57:04
94.
Proof of R β −γ Distribution
-
1:58:19
95.
F-test
-
2:01:14
96.
Slide 42
-
2:01:59
97.
Proof of F-Test