-
00:00
1.
LS Estimators and Properties
-
00:12
2.
Goodness of Fit
-
00:13
3.
Simple Regression
-
00:14
4.
Estimating Simple Regression
-
00:15
5.
Simple Regression
-
00:16
6.
Estimating Simple Regression
-
00:16
7.
Simple Regression Example
-
00:17
8.
Positive Definite Matrix
-
00:17
9.
Second Order Condition
-
00:18
10.
Digression to Derivative of Matrix:
-
00:18
11.
Find the Least Squares Estimator
-
00:23
12.
Estimation
-
00:24
13.
Find the Least Squares Estimator
-
00:24
14.
Estimation
-
00:25
15.
Linear Regression Model (3)
-
00:26
16.
Estimation
-
00:27
17.
Find the Least Squares Estimator
-
00:28
18.
Digression to Derivative of Matrix:
-
00:29
19.
Second Order Condition
-
00:29
20.
Positive Definite Matrix
-
00:30
21.
Simple Regression Example
-
00:31
22.
Estimating Simple Regression
-
02:52
23.
Simple Regression
-
03:22
24.
Goodness of Fit
-
11:36
25.
Simple Regression
-
11:37
26.
Estimating Simple Regression
-
11:39
27.
Simple Regression Example
-
13:33
28.
Estimating Simple Regression
-
13:33
29.
Simple Regression
-
13:34
30.
Goodness of Fit
-
16:33
31.
LS Estimators and Properties
-
19:55
32.
Four Assumptions
-
24:46
33.
Four Assumptions
-
24:54
34.
A Digression to Variance Covariance Matrix of a Vector
-
24:55
35.
Four Assumptions
-
25:10
36.
Four Assumptions
-
25:37
37.
Four Assumptions
-
25:50
38.
A Digression to Variance Covariance Matrix of a Vector
-
33:56
39.
Assumption A3
-
38:42
40.
Properties of LS Estimator: Unbiased
-
38:43
41.
Assumption A3
-
38:44
42.
A Digression to Variance Covariance Matrix of a Vector
-
38:44
43.
Four Assumptions
-
40:04
44.
Four Assumptions
-
40:04
45.
LS Estimators and Properties
-
41:13
46.
Four Assumptions
-
41:14
47.
Four Assumptions
-
41:15
48.
A Digression to Variance Covariance Matrix of a Vector
-
41:16
49.
Assumption A3
-
41:16
50.
Properties of LS Estimator: Unbiased
-
49:29
51.
VAR-COV Of 𝛽 :VAR( 𝛽 )
-
52:31
52.
Properties of LS Estimator: Unbiased
-
53:20
53.
VAR-COV Of 𝛽 :VAR( 𝛽 )
-
1:00:47
54.
VAR-COV Of 𝛽 :VAR( 𝛽 )
-
1:01:08
55.
Properties of LS Estimator: Unbiased
-
1:01:09
56.
Assumption A3
-
1:01:10
57.
A Digression to Variance Covariance Matrix of a Vector
-
1:01:10
58.
Four Assumptions
-
1:01:27
59.
A Digression to Variance Covariance Matrix of a Vector
-
1:01:27
60.
Assumption A3
-
1:01:28
61.
Properties of LS Estimator: Unbiased
-
1:01:28
62.
VAR-COV Of 𝛽 :VAR( 𝛽 )
-
1:01:29
63.
What Have We Got So Far?
-
1:04:49
64.
Gauss Markov Theorem (I)
-
1:04:51
65.
Gauss Markov Theorem (II)
-
1:04:51
66.
Gauss Markov Theorem (III)
-
1:04:52
67.
What do we need to do for statistical inference?
-
1:04:53
68.
Properties of the OLS Estimator
-
1:04:55
69.
What do we need to do for statistical inference?
-
1:04:56
70.
Gauss Markov Theorem (III)
-
1:04:56
71.
Gauss Markov Theorem (II)
-
1:04:57
72.
Gauss Markov Theorem (I)
-
1:04:58
73.
Gauss Markov Theorem (II)
-
1:04:59
74.
Gauss Markov Theorem (I)
-
1:05:03
75.
What Have We Got So Far?
-
1:05:20
76.
Gauss Markov Theorem (I)
-
1:09:05
77.
Gauss Markov Theorem (II)
-
1:15:43
78.
Gauss Markov Theorem (III)
-
1:15:47
79.
Gauss Markov Theorem (II)
-
1:16:06
80.
Gauss Markov Theorem (III)
-
1:21:02
81.
What do we need to do for statistical inference?
-
1:29:20
82.
Properties of the OLS Estimator
-
1:33:14
83.
Statistical Inference
-
1:33:26
84.
Hypothesis Testing
-
1:33:27
85.
Statistical Inference
-
1:47:17
86.
Hypothesis Testing
-
1:47:18
87.
The Presidential Election Example
-
1:47:19
88.
The Outcome of the US Presidential Election 1892-2012
-
1:47:19
89.
The US Presidential Election Again
-
1:47:20
90.
The Presidential Election
-
1:53:17
91.
The US Presidential Election Again
-
1:53:18
92.
The Outcome of the US Presidential Election 1892-2012
-
1:53:20
93.
The Presidential Election Example
-
1:53:24
94.
Hypothesis Testing
-
1:53:26
95.
The Presidential Election Example
-
1:53:30
96.
The Presidential Election Example
-
1:56:17
97.
The Outcome of the US Presidential Election 1892-2012
-
1:57:44
98.
The US Presidential Election Again
-
2:02:39
99.
The Presidential Election
-
2:03:12
100.
The US Presidential Election Again
-
2:03:17
101.
The Presidential Election
-
2:04:50
102.
Presidential Election Estimation
-
2:06:48
103.
The Presidential Election
-
2:07:51
104.
The US Presidential Election Again
-
2:07:53
105.
The Outcome of the US Presidential Election 1892-2012
-
2:07:54
106.
The US Presidential Election Again
-
2:07:54
107.
The Presidential Election
-
2:07:55
108.
Presidential Election Estimation
-
2:08:03
109.
The Presidential Election
-
2:08:16
110.
Presidential Election Estimation
-
2:09:15
111.
The Presidential Election
-
2:09:16
112.
The US Presidential Election Again
-
2:11:09
113.
The Presidential Election
-
2:11:09
114.
Presidential Election Estimation
-
2:15:57
115.
The Presidential Election
-
2:16:00
116.
Presidential Election Estimation
-
2:16:02
117.
The Presidential Election
-
2:16:16
118.
Presidential Election Estimation
-
2:16:17
119.
Hypothesis Testing: Ex. 3a)
-
2:17:04
120.
Presidential Election Estimation
-
2:17:10
121.
Hypothesis Testing: Ex. 3a)
-
2:18:10
122.
Alternative Test for H0: b2 =b3 (b2-b3 =0)
-
2:21:40
123.
Hypothesis Testing: Ex. 3a)
-
2:21:41
124.
Presidential Election Estimation
-
2:21:42
125.
The Presidential Election
-
2:22:39
126.
Presidential Election Estimation
-
2:22:40
127.
Hypothesis Testing: Ex. 3a)
-
2:22:40
128.
Alternative Test for H0: b2 =b3 (b2-b3 =0)
-
2:22:47
129.
Hypothesis Testing: Ex. 3a)
-
2:22:48
130.
Presidential Election Estimation
-
2:22:48
131.
The Presidential Election
-
2:22:48
132.
The US Presidential Election Again
-
2:22:49
133.
The Presidential Election
-
2:23:12
134.
Presidential Election Estimation
-
2:23:13
135.
Hypothesis Testing: Ex. 3a)
-
2:23:14
136.
Alternative Test for H0: b2 =b3 (b2-b3 =0)
-
2:24:02
137.
Statistical Inference for Linear Restrictions
-
2:24:04
138.
Alternative Test for H0: b2 =b3 (b2-b3 =0)