-
00:00
1.
Large Sample Theory And Maximum Likelihood Estimator
-
00:28
2.
Convergence
-
19:57
3.
Their Relationship
-
20:38
4.
Useful Results
-
26:06
5.
Useful Results
-
26:29
6.
Law of Large Number
-
36:06
7.
Proof of LLN 1
-
37:10
8.
Condition for Consistency
-
37:11
9.
Proof of LLN 1
-
37:13
10.
Law of Large Number
-
37:20
11.
Proof of LLN 1
-
37:26
12.
Condition for Consistency
-
37:54
13.
Consistency of LS Estimator
-
47:30
14.
Ex. 4-2: 𝑠 2 = 𝑡=1 𝑇 𝑥 𝑡 − 𝑥 2 𝑇−1 → 𝜎 2 ?
-
47:33
15.
LLN vs. CLT
-
47:35
16.
Ex. 4-2: 𝑠 2 = 𝑡=1 𝑇 𝑥 𝑡 − 𝑥 2 𝑇−1 → 𝜎 2 ?
-
47:35
17.
Consistency of LS Estimator
-
47:38
18.
Ex. 4-2: 𝑠 2 = 𝑡=1 𝑇 𝑥 𝑡 − 𝑥 2 𝑇−1 → 𝜎 2 ?
-
47:39
19.
LLN vs. CLT
-
52:04
20.
LLN vs. CLT
-
57:09
21.
Central Limit Theorem
-
58:20
22.
Ex. 4-3: The Asymptotical Distribution of 𝑇 𝑏
-
59:41
23.
Maximum Likelihood Estimation
-
1:14:55
24.
Solving for MLE
-
1:17:10
25.
MLE Examples
-
1:23:11
26.
MLE Examples
-
1:23:16
27.
Properties of MLE
-
1:23:18
28.
MLE Examples
-
1:24:03
29.
Properties of MLE
-
1:43:47
30.
Properties of MLE
-
1:44:05
31.
Lemma 4-2:
-
1:44:56
32.
A) MLE are consistent. 𝜃 𝑛→∞ 𝜃
-
1:48:13
33.
B) MLE are Asymptotic Normal
-
1:49:40
34.
Ex. 4-4: Poisson Distribution
-
1:51:51
35.
Ex. 4-4 MLE Example: Poisson
-
1:53:52
36.
4-5 MLE Example: Bernoulli
-
1:56:25
37.
Ex. 4-5: 𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑤𝑖𝑡ℎ 𝑝
-
1:56:33
38.
4-5 MLE Example: Bernoulli
-
1:56:54
39.
Ex. 4-5: 𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑤𝑖𝑡ℎ 𝑝
-
2:00:30
40.
Cramer Rao Bound: The Variance of An Unbiased Estimator is no smaller than −𝐄(𝐇) −𝟏
-
2:00:41
41.
Ex. 4-5: 𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑤𝑖𝑡ℎ 𝑝
-
2:00:43
42.
Cramer Rao Bound: The Variance of An Unbiased Estimator is no smaller than −𝐄(𝐇) −𝟏
-
2:03:20
43.
The Invariance Principle
-
2:06:21
44.
Tests Based on MLE
-
2:09:01
45.
Tests Based on MLE
-
2:09:06
46.
Estimation of Variance of MLE
-
2:09:09
47.
Ex. Test, Poisson Distribution
-
2:09:12
48.
Ex. Test, Poisson Distribution
-
2:09:14
49.
Ex. Test, Poisson Distribution
-
2:09:17
50.
Ex. Test, Poisson Distribution
-
2:09:18
51.
To Compute LMT
-
2:09:19
52.
Ex. 4-6 Normal Distribution
-
2:09:50
53.
Example: Normal Distribution
-
2:12:24
54.
Example: Normal Distribution
-
2:13:46
55.
Example: Normal Distribution
-
2:13:54
56.
Example: Normal Distribution
-
2:13:54
57.
Example: Normal Distribution
-
2:14:02
58.
Example: Normal Distribution